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Abstract—The aerospace industry has been adopting 
avionics architectures to take advantage of advances in 
computer engineering. Integrated Modular Avionics (IMA), 
as described in ARINC 653, distributes functional modules 
into a robust configuration interconnected with a “virtual 
backplane” data communications network. Each avionics 
module’s function is defined in software compliant with the 
APEX Application Program Interface. The Avionics Full-
Duplex Ethernet (AFDX) network replaces the point-to-
point connections used in previous distributed systems with 
“virtual links”. This network creates a command and data 
path between avionics modules with the software and 
network defining the active virtual links over an integrated 
physical network. In the event of failures, the software and 
network can perform complex reconfigurations very 
quickly, resulting in a very robust system. 

In this paper, suitable architectures, standards and 
conceptual designs for IMA computational modules and the 
virtual backplane are defined and analyzed for applicability 
to spacecraft. The AFDX network standard is examined in 
detail and compared with IEEE 802.3 Ethernet. A reference 
design for the “Ancillary Sensor Network” (ASN) is 
outlined based on the IEEE 1451 “Standard for a Smart 
Transducer Interface for Sensors and Actuators” using real-
time operating systems, time deterministic AFDX and 
wireless LAN technology. Strategies for flight test and 
operational data collection related to Systems Health 
Management are developed, facilitating vehicle ground 
processing. Finally, a laboratory evaluation defines 
performance metrics and test protocols and summarizes the 
results of AFDX network tests, allowing identification of 
design issues and determination of ASN subsystem 
scalability, from a few to potentially thousands of smart and 
legacy sensors.12 
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1. INTRODUCTION 

Recent advances in software architecture and data 
communications can benefit modern aerospace avionics 
systems by increasing capability and improving reliability. 
In particular, network-oriented standards offer high 
bandwidth and flexible support for modern devices and data 
types. Specifically, advances in computational capability, 
software interfaces and time deterministic networks can 
improve system architecture and facilitate software 
development for modern aerospace avionics systems. The 
ARINC 653 “Avionics Application Software Standard 
Interface” operating system specification incorporates 
partitions for separating critical and non-critical functions. 
Its Integrated Modular Avionics (IMA) concept relies on 
functional isolation between operating system partitions to 
limit propagating failure modes within avionics software; 
and to simplify software validation and verification (V&V). 
IMA replaces point-to-point cabling with a “virtual 
backplane” data communications network. The network 
connects software-configurable computing modules that can 
adapt to changes in operating modes or respond to an 
avionics system fault. There is a potential path between any 
of these modules, with the software and network defining 
the active Virtual Links to support effective partitioning. In 
the event of failures, the system can quickly reconfigure its 
software functions (in pre-determined ways), resulting in a 
very robust system. 
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IMA requires robust yet flexible data communications. This 
paper focuses on the Airbus Avionics Full-Duplex Ethernet 
(AFDX) and ARINC 664 Aircraft Data Network Part 7 
time-deterministic network Standards in order to determine 
completeness of the Standards, maturity of commercial 
products, acceptance and adoption by the aerospace 
industry, and appropriate role on-board spacecraft. AFDX 
uses the physical layer widely used in the computer industry 
as specified in the IEEE 802.3 Switched Ethernet Standard. 
This is a “star” topology, with the switch forming the center, 
routing data only to specified destinations and thereby 
minimizing network contention. The AFDX switch enforces 
timing and policies, limiting fault propagation and ensuring 
time determinism. 

Dual-redundant AFDX networks are used for reliability. 
The physical medium is generally shielded twisted pair 
copper cables, although optical fiber can also be used. 
Bandwidth is 10 Mbits per second (Mbps), 100 Mbps, and 
even 1000 Mbps. AFDX creates Virtual Links (VLs), which 
are point-to-multipoint time-division multiplexed 
connections. Also, time-synchronous delivery of critical 
data streams can be guaranteed, with a timing jitter of at 
most 0.5 msec for any VL. AFDX uses the concept of 
Bandwidth Allocation Gap (BAG) to distribute the data 
stream into timed packets, with the BAG value determining 
the time interval between packets on a given VL. 

Primary benefits of AFDX are a reduction of cable weight 
and volume, an increase in bandwidth and data volume, and 
greater flexibility in software design and V&V. AFDX 
complements ARINC 653 software architectures, serving as 
the virtual backplane. AFDX provides compatibility with 
network-oriented data communication formats. AFDX can 
support additional sensors for flight test and monitoring 
capability upgrades. The Ancillary Sensor Network is 
proposed for such use, to support up to 10,000 sensors at 
high data rates and resolutions, supporting smart sensors 
compliant with the IEEE 1451 Standard, simplifying 
calibration and maintenance. 

The Ancillary Sensor Network (ASN) was prototyped using 
up to four end stations. A total of 120 VLs were used to 
move large amounts of data in a time-deterministic manner 
suitable for sensor-data acquisition. Packet-to-packet 
“bandwidth allocation gap” (BAG) timing was measured for 
every packet generated by the traffic generator according to 
recipes that simulated various target functions. Average 
packet-to-packet timing for each VL was determined, along 
with standard deviation and minimum and maximum 
packet-to-packet timing intervals. These were compared to 
the AFDX jitter specification of 0.5 msec maximum. Lost, 
missing, or delayed packets were detected and reported. 

AFDX is a key technology for installing time-deterministic 
networks aboard aerospace vehicles. A survey of aerospace 
use showed that Airbus and Boeing are both adopting 
AFDX and ARINC 653 for flight-critical roles aboard the 

next generation of commercial aircraft. Although space-
qualified parts are not currently available, use of AFDX in 
certain roles aboard spacecraft can simplify cabling, leading 
to a significant reduction in cable weight and volume. Other 
significant advantages include simplified software design 
and network management, ease of reconfiguration and 
extension, and compliance with industry network standards. 

The team from Ames Research Center has significant 
experience in spacecraft data systems and communications, 
providing key analysis for the Space Station Freedom 
Command and Data Handling System. In 1995, the Wireless 
Network Experiment aboard Shuttle and Mir led to the 
adoption of wireless network technology for the 
International Space Station (ISS). Subsequently, the team 
developed the Databus Analysis Tool, a MIL-STD 1553B 
data-bus monitor space-qualified during STS 85 and used 
for ISS Control Momentum Gyro checkout during STS 92. 

2. INTEGRATED MODULAR AVIONICS 

The aerospace industry has been moving from “distributed” 
and “federated” avionics architectures to “modular” 
architectures, and is adopting other advances in computer 
engineering such as networks and Internet Protocol (IP). 
These advances promise to increase the performance and 
reliability of avionics systems while simplifying the 
development and certification of flight software and 
avionics hardware. 

The International Space Station (ISS) exemplifies a 
distributed architecture. The ISS avionics system is built 
with a large number of relatively small Orbital Replaceable 
Units (ORUs)—identical in concept to aircraft Line-
Replaceable Units (LRUs)—interconnected with multiple 
MIL-STD 1553B data buses.[1] The units typically have 
very specific functions that do not change over time 
(although a unit’s operating mode within a redundant 
configuration may change). An example of federated 
architecture is the Boeing 767 aircraft, which has dedicated 
LRUs responsible for specific functions such as engine 
control interconnected by ARINC 429 data buses. 

Such architectures have several drawbacks. The multiplicity 
of specific modules requires a large and complex 
development effort, plus the maintenance of a similar 
multiplicity of spare parts. Each component on a 
synchronous data bus must interoperate with all the other 
components, so software changes in one may require 
corresponding changes in the others. Experience has shown 
such systems to be slow as well as difficult to develop and 
to upgrade. On the plus side, the architecture can be fairly 
robust. Each module can be designed to function 
independently despite failures at other points in the system. 

The Boeing 777 Aircraft Information Management System 
(AIMS) exemplifies integrated avionics, with design 
starting in the mid 1990s. Most of the computation takes 
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place in large cabinets of processors. Data communication is 
via point-to-point data buses such as ARINC 429 or 
ARINC 629, augmented by fiber optic cables for display 
and maintenance interfaces.[2] LRUs and data 
communication cables are duplicated for reliability. The 
processing boards have dedicated functions (again in 
redundant configurations), but may aggregate functions 
formerly distributed among several LRUs in the older 
designs. This saves weight and power, and may simplify 
software development and integration. However, this 
architecture requires long cable runs for interconnecting 
distant LRUs that increase weight and may introduce 
reliability issues. 

Integrated Modular Avionics (IMA) replaces the point-to-
point cabling with a “virtual backplane” data 
communications network.[3] The network connects 
software-configurable LRUs that can adapt to changes in 
network functioning or operating modes. There is a potential 
path between any of the LRUs, with the software and 
network defining the active Virtual Links in real-time. In the 
event of failures, the system can quickly reconfigure, 
resulting in a very robust system. The ARINC 653 Standard 
“Avionics Application Software Standard Interface” 
describes an application program interface and operating 
system for producing a flight-critical avionics system that 
partitions critical and non-critical functions so that they 
cannot interfere with each other.[4] Not only does this 
simplify software design and implementation, it allows 
more flexibility in software V&V. It is the result of years of 
need by airframe manufacturers and their suppliers to have a 
practical way to build avionics systems that may be certified 
for human-rated or safety-critical applications within a 
reasonable cost, and to allow upgrades to their equipment so 
as to stay competitive and profitable. The first part of the 
standard refers to a specific Application Program Interface 
(API) called APEX, implemented in real-time operating 
systems (RTOSs) used for avionics control systems. The 
second part extends the APEX API by specifying the file 
system, port data structures, and scheduler, while the third 
part deals with APEX test compliance. XML configuration 
files are used to define the system hardware and software 
configuration. 

One of the benefits of this ARINC 653 Standard is that once 
flight certification is achieved, it is possible to add software 
such as health monitoring or mission support functions 
within new ARINC 653 partitions that may not be certified 
to the same level as flight critical functions. This provides 
an improved level of flexibility and ease of V&V to 
avionics software development. Currently, certain software 
changes in a platform running flight or safety-critical 
software can produce unintended fault modes due to 
ineffective isolation between software components. Proper 
adherence to ARINC 653 architecture and design guidelines 
helps guarantee this isolation, thereby allowing certification 
by component. Certain effects, such as software execution 
timing changes, can still propagate faults into isolated 
partitions, but methods such as communication-link 

partitioning can help limit these effects. This software 
standard and its associated certification processes allows 
each component to be certified to the level of criticality 
associated with that component, producing major cost and 
schedule savings. 

ARINC 653 supports Avionics Full Duplex Ethernet 
(AFDX) by means of Queuing and Sampling (Q&S) Ports. 
The APEX API defines the calls to such ports, and the use 
of an AFDX data communications system nicely 
complements the logical constructs for Q&S ports. The 
concept of a Queuing Port is similar to a First In-First Out 
(FIFO) buffer, with transmit and receive timing similar to 
TCP/IP streams. With AFDX providing bounded-time 
latency, the delay in stream reception is also bounded. 
However, the FIFO buffer, whose size is set as a parameter 
in the AFDX configuration, will produce some variable 
delay as it is filled or emptied at different rates. See Figure 1 
for a graphical description of Q&S ports. A sampling port, 
by contrast, overwrites the previous value in a single packet 
buffer and updates a “freshness” parameter with a 
timestamp indicating when the data was written. This buffer 
can then be read by the receiving application either once or 
multiple times. This mode is very useful for reading sensor 
data where the exact time of the sensor value is of critical 
importance. Most ports used in ARINC 653 flight 
implementations are sampling ports. 

Figure 1. Queuing and Sampling Ports 
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3. NETWORKS FOR AEROSPACE 

Flight-critical avionics systems maintain flight-control loops 
by reading critical sensors such as inertial measurement 
units, computing current deviations from desired trajectory, 
and outputting needed corrections to flight-control surfaces 
and thrust-vector actuators. This must be done at a certain 
consistent rate to maintain full control of the flight vehicle. 
Missing corrections or erroneous corrections to control 
elements can result in loss of flight control, and in 
catastrophic hazards such as vehicle airframe overstress and 
breakup. Typical ascent-vehicle flight-control loops run at 
the 10 msec rate. Support functions can run at lower rates, 
resulting in a collection of “rate groups” usually at time 
frames of 10 msec, 100 msec and 1000 msec. Therefore, a 
primary measure of data-communication utility for flight 
control is the ability to maintain rate-monotonic scheduling 
for all messages. Alternative figures of merit are total 
message bandwidth, message error rates, and fault 
containment for propagating fault modes. 

Two communication standards—ARINC 429 and MIL-
STD 1553B—have dominated commercial and military 
aviation. ARINC 429 connects LRUs aboard the 
Boeing 737 and other civilian aircraft using distributed 
avionics architectures. The MIL-STD 1553B is used in most 
military aircraft for flight-critical control and control of 
various mission systems. Both are half-duplex 
communication standards. ARINC 429 connects LRUs via a 
point-to-point cabling scheme; MIL-STD 1553B connects 
multiple devices via a common bus. Both are currently used 
in production aircraft and spacecraft, but deficiencies in 
performance for modern aircraft has led to adoption of 
extended and modified versions of these standards. 

Data communications standards usually address specific 
layers of communication, as formalized in the Open 
Systems Interconnection Basic Reference Model. We will 
use a simplified version of this seven-layer stack, reducing it 
to four layers. At the bottom is the physical layer (PHY), 
which is how the data is represented in physical reality: as 
electrical signals or optical impulses, the type of modulation 
and interconnection, and any other characteristics specific to 
signaling such as data rate, clocking scheme, etc. 

Next is the Media Access Control (MAC) layer—also called 
the data link layer—specifying the logical mechanisms for 
transmitter and receiver control, access to the medium 
(using either time-division, frequency-division, or code-
division multiplexing), byte and word interpretation, and 
any error-checking or correction functions. 

The next higher layer is the protocol (PROT) layer, which 
specifies the logical construct of “messages,” message 
sequencing, and acknowledgement. The fourth layer is the 
Application Layer, where specific software functions 
running on the computational platforms can define their 
own methods for assuring data integrity and managing 
communication assets and redundancy. 

Ethernet 802.3 MAC allows each transceiver on the network 
to initiate message transfer on its own. This is the key 
characteristic separating networks from data buses: 
networks generally provide peer-to-peer asynchronous 
access rather than master-initiated access and message 
transfer. Ethernet is an asynchronous MAC with each 
transceiver truly independent and the network using Carrier 
Sense Multiple-Access/Collision Detect (CSMA/CD) for 
arbitrating access. Therefore, in cases of high network load 
(with many transceivers trying to send messages at the same 
time), the probability of collision is high and the latency for 
a given message to be transferred can be unbounded. That 
is, it may take a long time for a given transceiver to be able 
to access the physical layer to send its message, due to 
constant interference or collisions with messages being sent 
by other transceivers. This unbounded message latency 
makes Ethernet unusable for time-critical control loops. 
Such a network is termed an 802.3-compliant network. 

As the Ethernet standard evolved, it moved from a common 
bus-type cable fabric (Thick and Thin Ethernet) to a star 
topology with a hub in the center. Each transceiver was 
connected to an independent hub port and now all collisions 
and interference could be mediated in the hub. However, 
this simply moved the cause of the media contention from 
the cable to the hub and did not solve the unbounded 
message-latency problem. 

The emergence of the switching hub—which buffered and 
directed each message to the correct port based on its MAC 
address—resulted in significant reduction of media 
contention and much better network performance. A lightly 
loaded switched Ethernet does in fact produce predictable 
latency, provided that each transceiver exercises restraint in 
its use of the network media. This results in a profiled 
network. 

This concept of limiting each transceiver’s media access is 
the central one behind time-deterministic Ethernet. AFDX 
times packet and message initiation for traffic shaping, 
limiting when and at what rate any transceiver transmits on 
the AFDX network. This produces bounded latency for 
message delivery, and produces a time-deterministic 
network. [5] AFDX is really a standardized method for 
creating a good profiled network. 
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ARINC 664 – Ethernet and AFDX 

Ethernet emerged as the first high-performance local area 
network (LAN) standard for microcomputers in the 1980s.  
It was developed by DEC, Intel, and Xerox, replacing point-
to-point serial links and telephone modems. The IEEE 802 
family of standards describes the Ethernet PHY and MAC 
layers and their relationship to Internet Protocol (IP). IEEE 
802.1 describes overall architecture, bridging, and network-
management functions. IEEE 802.2 describes logical link 
control for Ethernet, while 802.3 through 802.17 define 
variations of PHY and MAC-layer technology such as 
switched Ethernet and wireless Ethernet. 

IEEE 802.3, “Carrier Sense Multi Access/Collision Detect 
(CSMA/CD) Access Method and Physical Layer 
Specification,” is the most relevant standard, being the 
primary one for switched Ethernet and AFDX.[6] The 
original 802 specifications defined shared-medium, peer-to-
peer data packet communication methods for multiple end 
stations, with broadcast modes for network management.  It 
allowed LAN subnets to be bridged together into much 
larger networks, including large hierarchical networks. 

The Ethernet PHY layer is a differential 10-volt, 
Manchester-encoded, self-clocking signal carried over a 
transmission line. Coaxial cable or shielded twisted pairs are 
commonly used for cable segments of up to 1 Km in length. 
Conventional 802.3 Ethernet uses the CSMA/CD access 
method: an end station listens for network traffic and 
transmits when the network is clear, but then backs off and 
retransmits in the event of a collision (when two end 
stations transmit simultaneously). 

An Ethernet 802.3 frame is a data structure for containing a 
variable-length data field within a packet. Up to 1518 bytes 
can be contained in one frame (with contents defined at the 
MAC layer). The MAC layer also delimits the frame, 
addresses the packets (48 bit), transfers data and detects 
errors, performing Logical Link Control (LLC). Basic error 
rates specified in the standards are important, being 8 X 10-8 
per byte for wired end stations, with undetected errors 
specified at a 5 X10-14 rate per byte of data. 

The use of a star topology and a central switch—which 
detects the destination address and sends the packet to only 
that port—can significantly decrease the chances for data 
collision, resulting in best performance with minimal packet 
latency. Note however, that IEEE 802.3 is not time-
deterministic. Under certain circumstances, such as high 
network load, successful packet transmission cannot be 
guaranteed within a given time period (packet latency). A 
packet can be delayed indefinitely by repeated collisions 
within the network. In fact, there is an uncovered failure 
mode affecting the entire network: when an end station 
starts jabbering uncontrollably and therefore saturates the 
network, preventing other needed data from being 
transferred. For this reason, Ethernet has not been 
considered for real-time, safety-critical use. 

However, the widespread use of Ethernet, its performance, 
and its peer-to-peer structure are attractive for use in the 
aerospace industry. There have been several attempts to 
define Ethernet for use aboard vehicles, such as the ARINC 
664 Standard, “Aircraft Data Network,” which is comprised 
of eight parts.[7] This standard was developed to enable 
multiple networks optimized for different purposes to co-
exist aboard a vehicle, interface well with Airline 
Operational Networks, be compliant with a large range of 
commercial standards and implementations, and standardize 
Conformance testing at the system and subsystem level. 

Part 1 of the standard is “Systems Concepts and Overview,” 
followed by Ethernet and Internet Protocol specifications in 
Parts 2 to 6. This ARINC standard is an implementation of 
the IEEE 802 Standards adapted for aircraft, containing 
much of the same material but in greater detail and specific 
to aircraft technology. ARINC 664 Part 7, “Avionics Full-
Duplex Ethernet (AFDX) Network,” specifies a certain 
time-deterministic method applicable to real-time, safety-
critical command and control.[8] 

Airbus commissioned the study and development of 
network-based data communication standards for 
commercial aviation, resulting in the Airbus Standard for 
AFDX. [9] Subsequently, ARINC developed the 664 Part 7 
standard around similar concepts for Boeing and other US 
companies. There are minor differences between the two. 
IEEE 802.3 interface methods allow the use of standard 
Ethernet hardware for development by implementing a 
compliant PHY layer. However, AFDX modifies the MAC 
layer extensively, resulting in AFDX frames that look 
similar to Ethernet frames but with certain fields containing 
different parameters. See Figure 2 for a definition of an 
AFDX frame. 
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Figure 2. AFDX Frame Definition 

AFDX places certain requirements on the 802.3 PHY 
interface: the interface must transmit even with the cable 
disconnected, and must support the full 100-Mbps rate in 
full-duplex mode. This is to prevent transient cable 
disconnects from backing data up through the network, and 
to support the full data rate. Ethernet can be used without a 
protocol in a raw-packet transfer mode, but data-transfer 
reliability requires a protocol and AFDX specifies the use of 
either Transmission Control Protocol (TCP) or User 
Datagram Protocol (UDP) in all cases. 

Key properties of an AFDX network are Virtual Links (VL), 
Bandwidth Allocation Gap (BAG), Maximum Frame Size 
(LMax), Sequence Number (SN), data Integrity 
Management (IM), and Redundancy Management (RM). 
The Virtual Link (VL) provides a logical-addressing 
structure within the network, simulating a virtual set of 
ARINC 429 point-to-multipoint data links. That is, each 
source and multiple receivers create a permanently defined 
virtual circuit with guaranteed delivery of data, even though 
the physical and logical transport is over a star-topology, 
peer-to-peer network fabric. 

The VL concept is central to AFDX in that each VL has a 
specific timing and bandwidth allocation on the network. 
That is, timing and traffic shaping is done on a per-VL 
basis. The VL is specified in both the MAC address of the 
end station and in the specific IP addressing at the protocol 
level. One of the first major differences a user observes on 
an AFDX network—as compared to an Ethernet network—
is that a given end station has multiple MAC addresses 
(each corresponding to a different VL on the interface) as 
well as multiple IP addresses (also designating different VL 
numbers) on the same end-station port. In contrast, most 
Ethernet ports have fixed MAC and IP addresses for each 
interface port. 

The AFDX traffic-shaping function regulates the timing of 
packet generation on the network for each VL and also the 
portion of total network bandwidth used by the given VL. 
The key mechanism is the Bandwidth Allocation Gap 
(BAG), which is the specified time interval between 
successive packets (or frames) for a given VL. That is, 
instead of simply transmitting successive packets at the 
maximum rate possible (like Ethernet), an AFDX end 

station will regulate its transmission of packets to one for 
each specified BAG interval, thereby providing traffic at a 
constant and deterministic rate. Aggregations of carefully 
timed and bandwidth-limited transmitting end stations 
should ensure that the entire AFDX produces and preserves 
time-determinism. 

The allowed AFDX BAG values are 1, 2, 4, 8, 16, 32, 64, 
and 128 milliseconds (msec). In order to properly allocate 
bandwidth, the different BAGs are given maximum data-
payload sizes that are proportional to the BAG rates. That is, 
the 1 msec BAG is typically allowed only 64 bytes per 
frame of data, while the 128 msec group is allowed the 
maximum 1518 bytes per frame. A network traffic timeline 
for several VLs with differing BAGs is shown in Figure 3. 

Figure 3. Virtual-Link Bandwidth Allocation Gap 

By definition, a given VL is sourced by only one 
transmitting end station but can have multiple receivers. 
This makes the virtual topology of AFDX closely resemble 
ARINC 429 and MIL-STD 1553B physical topologies. In 
fact, there is a formal mapping of ARINC 429 to AFDX and 
a similar mapping can be done for MIL-STD 1553B and 
similar protocols.[10] This simplifies porting of legacy 
software code to AFDX environments and can benefit 
flight-certification efforts. Any AFDX end-station port 
interface can source many VLs and can also receive other 
VLs, as needed by the application. Note how the many 
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physical cables needed for ARINC 429 are replaced by a 
single network cable plant containing the same circuits, but 
now implemented in time-division multiplexed VLs—
saving much weight, volume, and wiring complexity. 

The receiver maintains data integrity by checking that each 
packet arrives within the specified time interval (BAG) for a 
given VL and its SN matches the next expected value. 
Frames for a given VL must be transmitted and received in 
order, for the SN to stay sequential and out-of-order packets 
are rejected. Furthermore, the receiver checks data integrity 
using cyclical redundancy check (CRC) error detection. The 
implication is that packet retries and acknowledgements are 
not the primary mechanism for ensuring data integrity. 
Rather, very low packet loss—with data integrity and timing 
determined by SN and CRC methods—is needed for time 
determinism.  Errors are rejected rather than corrected 
because timing conformance is as important as data integrity 
in real-time control systems, an inherent design tradeoff. 

Other data integrity methods can be instituted at the 
application layer, but the AFDX network will provide a 
sequential stream of data at the defined time intervals with a 
very high degree of error detection. Network errors look like 
missing data for AFDX, but look like delayed data for 
Ethernet. The Integrity Management (IM) parameter 
determines whether the receiver uses the SN or ignores SN 
errors. One might notice that data integrity and temporal 
integrity are a design tradeoff in data communications; one 
can improve data integrity by acknowledgement or 
redundancy, but at the expense of complicating the timing 
(and vice versa). 

The protocol (PROT) layer is very important in maintaining 
data integrity. ARINC 664 Part 7 also defines the AFDX 
network protocol layers based on TCP/IP and User 
Datagram Protocol (UDP). Ethernet simply forms and 
transmits packets, but leaves the data accounting, and 
therefore data integrity to the PROT layer, usually 
implemented as TCP/IP for most networks to be compatible 
with the Internet. 

TCP/IP requires acknowledgement packets to be sent by the 
receiving station for packets successfully received. TCP/IP 
also tracks packet sequence and retransmits packets lost in 
the network, allowing out-of-order transmission and receipt 
of packets as necessary. All of this acknowledgement and 
retransmission takes time and bandwidth, resulting in 
temporal non-determinism for Ethernet and TCP/IP 
networks. The TCP/IP protocol also arranges packets in the 
correct order prior to passing them to the application layer. 
Therefore, a missing packet can interject a significant delay, 
since all data is delayed until successful receipt of a 
retransmitted packet. On a heavily loaded network, packet 
loss can be significant and packet delay and retransmission 
can produce significant and highly variable latency. 
Furthermore, the use of TCP/IP “windows” where a single 
acknowledgement suffices to cover a number of transmitted 

packets (usually contained in a specified buffer size) can 
also disrupt temporal behavior. 

AFDX solves the potential problems by using UDP, which 
is similar to broadcasting packets. Although ARINC 664 
Part 7 specifies either TCP/IP or UDP, in practice only UDP 
is used. UDP requires no protocol acknowledgement and 
therefore limits network load by eliminating 
acknowledgement packets, meshing nicely with SN and 
BAG concepts. AFDX thus relies on the MAC frame 
delivery mechanism, using BAG to limit network bandwidth 
and SN to track data integrity. 

Packet loss can be a significant performance issue for 
AFDX. The Study Team investigated mechanisms for 
packet loss, since this would be a major problem for critical 
applications. By its nature, Ethernet 802.3 is asynchronous, 
with each end station able to transmit at any time. There is 
no global time synchronization mechanism. Ethernet 802.3 
relies on the switch to prevent significant packet loss. 
However, Ethernet 802.3 allows packet loss. Any given 
switch has limited buffering capability, and in the event of 
overload will drop packets. The use of TCP/IP prevents 
packet loss from becoming data loss by retransmitting the 
lost packets. UDP, by contrast, simply allows dropped 
packets to become data loss and never retransmits missing 
packets. AFDX using UDP has a similar policy; missing 
packets translate to missing data and therefore missing 
sensor values or missing control parameters when applied to 
a flight-critical avionics system. 

The primary mechanism for packet loss is collisions. In an 
Ethernet 802.3 network, this loss is in the switch. Since each 
end station-to-switch connection is full-duplex, packets 
cannot be lost on that network segment. For most avionics 
use, network utilization is so far below capacity that 
overload in end station-to-switch segments is unlikely. 
Recall that AFDX purposely limits network utilization by 
staggering all packets by BAG. However, an end station 
with many VLs can experience a coincidence of all VLs, 
therefore resulting in many frames being transmitted or 
received concurrently. For example, in Figure 3 above, VL 
10 will interfere with VL 20 every other frame and with VL 
30 every fourth frame. If all these VLs originate from the 
same end station, the end station scheduler can stagger the 
frame transmission and avoid contention. 
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While the timing for a single VL can be maintained easily, 
when many end stations are used to form a real AFDX 
network the AFDX switch is responsible for solving 
contention caused by collisions. In this case, the collisions 
are between simultaneous packets issued from multiple, 
asynchronous end stations. The network switch will buffer 
the simultaneous packets and send them to the destinations 
after a brief queuing delay, thus introducing time jitter into 
the AFDX network. The maximum timing jitter is defined 
and enforced for each BAG rate for every VL in the 
network, to maintain maximum bounded latency for all 
network traffic. The maximum jitter is equal to half the 
minimum BAG, or at most 0.5 msec. If the switch or end 
station cannot handle many concurrent VLs due to buffer 
limitations, there will be packet loss. 

The AFDX Switch is a critical component of an AFDX 
network, providing the MAC-layer routing function from 
one end station to another. It is also responsible for AFDX 
policy enforcement for addressing and timing. Most 
Ethernet switches are learning types that determine a 
destination MAC address—of the end station connected to 
each switch port—using the Logical Link Control 
Discovery Protocol. Once the first Ethernet packet is 
successfully sent through the switch port, that MAC 
addresses is stored in the switch address buffer. This process 
implies that the first time a packet is routed through the 
switch, the discovery process and switch learning time will 
delay that packet for an indeterminate interval. This cannot 
be tolerated in a time deterministic network, so the AFDX 
switch contains a static address-switching table configured 
during initialization and remaining constant during 
operation. This means that the network cannot be physically 
reconfigured during operation, unlike Ethernet. However, 
reconfiguration can be easily achieved by updating the 
switch table explicitly. 

The AFDX switch validates addresses and routes data to the 
correct switch port using the static configuration table. It 
also enforces BAG timing by monitoring the bandwidth 
utilization and packet timing of a specific VL. If a specific 
VL is malfunctioning by jabbering and jamming the 
network, the switch will block those faulty packets from 
going any further. The AFDX switch is therefore a key 
element in containing fault propagation in an AFDX 
network, by detecting and isolating babbling end stations. 
Of course, there would be a total loss of the VLs involved in 
such policy violations. Therefore, data integrity is 
maintained at the PHY layer using cyclical redundancy 
check (CRC) for each frame (providing excellent error 
detection) and Sequence Numbers (SN) for VLs to track 
data packets. 

AFDX also defines the use of dual-redundant networks. 
Redundancy management is performed on a VL basis, using 
the Redundancy Management (RM) parameter. If set, both 
AFDX ports transmit the same packet at the same time and 

both networks provide the same packets to two independent 
receiver ports. The algorithm for accepting data is to accept 
the first received packet. In the case of unequal transit times 
through the switch, the first packet wins—which favors 
better time determinism by reducing jitter. By specifying 
redundancy on a per VL basis, other non-time-critical data 
could be transmitted on either port, useful for single 
avionics modules that are only in close proximity to one 
network’s physical route through the vehicle. 

4. MISSION COMPUTER DESIGN 

The “Mission Computer” is a concept for an on-board 
general-purpose computer for spacecraft mission support 
functions. The use of an ARINC 653-compliant real-time 
operating system (RTOS) would be ideal for the Mission 
Computer (MC), allowing multiple applications to have 
access to all flight vehicle data and state information. This 
data exchange would be one way: the Mission Computer 
can read the vehicle parameter information but cannot alter 
it. The high-priority partition would be used to run the real 
time tasks—such as reading the AFDX network, buffering, 
and writing the entire data stream to the Flight Data 
Recorder (FDR) and for performing telemetry and 
communication-link protocol formatting. 

The central concept is to separate the flight-critical 
functions from mission-critical functions by running them 
on different platforms. The MC would be able to host 
application programs needed for certain specific phases of 
flight. The use of ARINC 653 would allow transient 
applications, to be loaded only when needed. Allowing 
dynamic use of programs enables very effective use of the 
Mission Computer functional capability. Of course, each of 
these “dynamic” programs would be fully certified as 
appropriate for its function prior to running it aboard 
spacecraft. The use of ARINC 653 allows each program to 
be validated and verified independently since the RTOS 
provides adequate partitioning. The AFDX network ensures 
that data communications can be conducted in a time-
deterministic manner. Compliance with the ARINC 653 
guidelines on functional separation and AFDX network 
usage further supports robust partitioning. 

A reference software architecture for the Mission Computer 
can be based on ARINC 653, taking advantage of fault 
containment provided by the partitions. The tau 0, time-
priority partition runs the main data-handling function, 
which receives flight-data parameters, processes them, and 
stores them in the FDR, built as a large array of flash 
memory. In addition, it selects parameters for downlink, 
manages the multiple parallel communication resources, and 
provides the main interface to space-based network 
communications. It can host ancillary data acquisition 
functions, storing these parameters in the FDR and even 
down linking them upon request. It could act as a command 
arbitration interface, determining which specific 
communication link had priority—important for supporting 
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concurrent legacy, network-compliant and proximity 
communication links. It could host machine-vision 
applications for automated rendezvous and docking and 
even Vehicle System Management (VSM) functions, 
exclusive of critical failover. 

A classic example of advanced VSM function would be the 
reconfiguration of a critical system after a failover. The 
automatic failover may be suboptimal, therefore, a 
subsequent reconfiguration could optimize against 
subsequent additional failures. It could also optimize 
resource use such as power, acting as an on-board overall 
power manager. Such functions could be performed on the 
ground, as in current practice, or could be migrated to the 
MC later to provide more autonomy for future missions. 
The flight critical computer (FCC) would reject any 
inappropriate input from the Mission Computer, providing 
the final safety check (as appropriate for flight control 
functions). 

ARINC 653 defines queuing and sampling ports in the 
APEX API, and AFDX extends this concept to time-
deterministic network operation. Queuing ports are very 

similar to TCP/IP streaming sockets, except that AFDX 
allows definition of a fixed queuing first-in-first-out (FIFO) 
buffer size, preventing most buffer overruns and 
underflows. Generally, the queuing FIFO size is specified as 
the number (not bytes) of AFDX packets in the FIFO, also 
leading to more control over the potential length of time 
delays caused by the FIFO buffer backing up. Proper setting 
of internal RTOS and AFDX parameters can ensure that the 
queuing FIFO buffers will not experience problems. 

The ARINC 653 sampling ports have no buffer at all, but do 
indicate parameter freshness through the use of a timestamp. 
In this case, a read or write of a sampling port is the 
equivalent of reading a sensor connected directly to the 
computer: each read will read the last sensor value 
communicated on the network. Multiple reads will read the 
same parameter, but can use the freshness parameter to 
identify stale data. The design of AFDX, requiring 
predefinition of VLs, sampling and queuing ports, and other 
runtime parameters can eliminate many of the buffer-
management issues involved in Ethernet networks. 
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Ancillary Sensor Network Design 

A simple AFDX network design example will help identify 
the relevant issues for AFDX configuration and design. The 
detailed design of the Ancillary Sensor Network (ASN) 
highlights the advantages of a network approach for adding 
sensors to a spacecraft for flight test or vehicle health 
management. This can help meet the development flight 
instrumentation need for flight tests. Many times during a 
vehicle’s operational lifetime, it may be desirable to add 
some new sensing capability to an existing design. For 
example, the Orbiter has the “Orbiter Instrumentation Bus” 
used for flight-test and ancillary data collection. Subsequent 
to the loss of Columbia, a wireless wing-leading-edge 
impact-detection system was installed on the Orbiter to 
detect any foam impact during ascent or any micrometeorite 
impacts during orbit. 

We will assume that the Ancillary Sensor Network needs to 
be single-fault tolerant and provides time-synchronous 
delivery of sensor data to the Mission Computer. In 
compliance with standard data communications practice, 
one network runs down the right side of the vehicle and one 
network runs down the left side of the vehicle. The goal is to 
allow new “smart sensors” to be added to the ASN in a 
plug-and-play fashion with minimal reconfiguration 
required. Smart sensors can be new sensor modules or 
“virtual sensors” which use legacy sensors with additional 
processing in software providing ease of configuration, 
identification and data validation. The smart-sensor modules 
include network-connected interfaces to multiple sensors 
adhering to IEEE 1451.1 standards for data, information, 
and knowledge management across networks [11]; 
transducer electronic data sheets (TEDS)—IEEE 1451.2—
and health-related information as specified in Health 
Electronic Data Sheets (HEDS). [12] Use of AFDX 
sampling ports rather than Ethernet will allow setting up 
different time-synchronous rate groups for sampling the 
sensor data, with time stamping of each data point. 

The use of smart sensors (virtual-using legacy sensors, or 
physical-with embedded processing) provides a number of 
benefits. Smart sensors provide configuration data and 
information via TEDS and HEDS, which describe details 
regarding sensor operational state, calibration status, serial 
number and other meta data relevant to validating sensor 
values in critical systems. [13] An analogous approach 
could define component electronic data sheets (CEDS), to 
include (virtual) smart components such as valves, tanks, 

etc.; also communicating data and information on the 
network bus. [14] Smart sensors can use unified data 
interfaces such as AFDX, with greatly simplified 
connections, emulating plug-and-play functions. This makes 
adding sensors for flight test or operational health 
assessment far simpler than older methods. Software can use 
TEDS and HEDS templates to quickly add a new sensor to a 
data acquisition loop, for example. Finally, advances in 
fabrication techniques are possible using a number of 
microscopic sensing elements, with the sensed value 
representing an average of the valid sensing elements. This 
has the potential of significantly improving calibration and 
sensor operation by providing redundancy and 
computational functions at the sensor module level. A bad 
or inaccurate sensing element could be voted out of a valid 
configuration, increasing robustness and increasing 
calibration intervals. [15] 

The overall ASN design is shown in Figure 6 consisting of a 
dedicated pair of AFDX switches for ASN use that connect 
to the main AFDX Mission Computer switches. This 
example provides four smart-sensor ports for the spacecraft. 
AFDX will support mixes of single and dual-redundant 
network traffic. 

 

Figure 5. ASN Software Architecture 

Console 

Micro Kernel 
Processor Platform Interface

Partition 1
Data Transfer

Partition 2 
APEX API 

Partition 3
ASN 
DAQ 

App
Loader

ARINC
S-Ports

ARINC
Q-Ports

RTOS System Library 

RTOS Scheduler, Device Drivers, Network 
Stack

Partition
Mgmnt



11 

In software, the ASN network manager runs in a separate 
ARINC 653 partition. The applications that might use the 
data are run in another partition and communicate with each 
other via shared memory. The ASN manager performs the 
functions of polling the ASN network, discovering and 
reading the data from the various modules. Each module is 
assigned a certain set of 1-msec, 8-msec, 32-msec, and 128-
msec rate groups. 

The AFDX network is designed and scheduled to 
accommodate a full set of potential modules. In a real 
spacecraft, most of these “slots” would not be used. If that 
module or data slot were missing, no packets would flow; 
the manager would place nulls in the corresponding shared 
memory array. The array would be completely refreshed 
each major cycle. 

AFDX internal sampling ports would be an alternative 
method of communicating data from the ASN manager to 
the sensor application programs. The manager would also 
put the parameters into the telemetry stream if desired, and 
also write them to the FDR. Figure 5 shows a representative 
architecture for the ASN using the ARINC 653 software 
standard running in the Mission Computer. The only new 
software module would be the ASN data acquisition (DAQ) 
module, running in a separate partition to guard against 
software coding errors (or runtime errors related to the 
network software) in this module from affecting functions 
like FDR or telemetry. 

The table below shows the number of sensor-pod modules, 
data channels, VLs, and other parameters for this design 
example. Our Lab Evaluation will attempt to duplicate this 
ASN design for validation. We define just four sensor pods, 
each containing eight channels per rate group, for a total of 
32 channels per pod. This gives a total of 128 channels, 32 
at each rate group. This is a small sensor system. Maximum 

bandwidth and other system parameters are summarized at 
the bottom. This example uses 30% of the total available 
bandwidth on a 100-Mbps network. There is much capacity 
left, and the design could scale up a factor of two—resulting 
in an ASN that would support up to eight sensor pods, each 
hosting multiple sensors at high rate and resolution. 

Table 1. Ancillary Sensor Network Configuration 
 

Each sensor pod can host many individual smart sensors or 
conventional sensors, given the rather large message size 
available for data transfer. Even the smallest packet size (64 
bytes) associated with the 1 msec rate group would support 
up to 16 sensors for each channel providing 32 bits of data 
(Integer32) at each sample point. Each Pod supports 8 
channels per rate group. Using this assumption, this ASN 
design would support a total of 7680 sensors. 

Certain sensor pods could actually be sensor networks or 
webs in practice, resulting in a scalable hierarchical system. 
This approach would allow a given sensor pod to be 
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now capable of acquiring up to 1920 sensors at any one of 
the four rate groups. Such a cluster architecture has 
significant advantages in terms of connection routing 
efficiency, functional redundancy and fault containment. 

The hardware and RTOS platform needs to be validated by 
extensive testing of the hardware for environmental 
tolerance, particularly to space radiation effects such as 
single event upset (SEU) and total dose effects. 

Any flight use of AFDX will require a full validation of the 
AFDX hardware interface and the associated software. This 
is best done in the context of the platform-validation effort 
with the data-communication hardware and software being 
major platform elements tested. Test protocols from this 
paper’s Laboratory Evaluation can be used as the basis for 
AFDX flight certification. 

The adoption of AFDX for high-speed data handling for 
telemetry, communications, display-data transfer, and flight 
data-recording functions fills an important need for more 
bandwidth, time determinism, and flexibility in spacecraft 
data communications. The use of an AFDX Ancillary 
Sensor Network (ASN) provides an opportunity for 
adoption of AFDX with virtually zero risk—only the non-
critical ASN would be affected in case of technology 
performance shortfalls. Concurrent adoption of smart-sensor 
technology (IEEE 1451) can significantly improve the types 
of sensors available and their reliability and cost. The 
AFDX would provide flexible capability to add sensors for 
vehicle health monitoring that would provide sufficient 
bandwidth, ease of interface and component design, and 
considerable simplification of software design, 
implementation and V&V. 

5. LAB EVALUATION 

The AFDX ASN laboratory evaluation measured the 
performance of commercial AFDX products to determine 
conformance to the Airbus AFDX and ARINC 664 
Standards using a representative ASN configuration. The 
evaluation focused on time determinism and network 
throughput in the packet domain. Statistical analysis was 
used to quantify the capability of ADFX to provide time-
deterministic messaging during testing over a broad range of 
operating configurations. The network was deliberately 
overloaded and the resultant error modes observed. 

A key requirement for the evaluation was the ability to 
generate a rich set of test vectors containing different 
network packets with various BAG time rates, packet data 
sizes, and number of VLs. A second key requirement was 
the ability to capture and analyze the packet traffic of a fully 
loaded network at the full network speed of 100 Mbps. 
Setting up the evaluation protocols to conform to current 
aerospace practice has required consultation with experts on 
AFDX. They have indicated that all AFDX implementations 
use UDP as the chosen protocol, given that it can provide 

better time determinism by not requiring acknowledgement 
packets. Therefore, all testing was performed using the UDP 
Protocol. 

The laboratory evaluation supported multiple software tools 
for generating AFDX network traffic, including the ability 
to inject specific errors. The AFDX monitor and associated 
software produced packet-capture datasets with hardware 
time stamps accurate to better than 1 microsecond. The 
traffic must stress the net to expose AFDX weaknesses and 
any product implementation errors and timing jitter. Do 
many high-rate (1 ms) packets cause more stress than high-
rate packets interspersed with large, low-rate data payload 
packets? How does congestion overloading of the switching 
hub (via multiple simultaneous AFDX traffic generators) 
affect packet timing jitter? Can the overloaded switch—
which adds latency to packets subject to network 
contention—produce violations of the maximum packet 
jitter? What are the throughput and configuration issues 
associated with larger, more representative ASN networks? 

The Study Team also developed software to analyze the data 
produced by the AFDX testbed. Loading the network 
generated thousands of packets per second, each generating 
a detailed packet-capture record. Analysis of timing jitter 
required software to read this data and perform conformance 
analyses. To answer questions posed in the task request, the 
Study Team developed network performance metrics based 
on jitter statistics (e.g., minimum, average, maximum, and 
standard deviation), number of packets and total bytes per 
second (representative of network throughput), type of 
errors encountered under stress conditions and the 
sensitivity of each rate group to timing variations. Test runs 
were long enough to generate statistically meaningful data. 

The packets were captured and the data set analyzed for 
absolute timing, timing jitter, VL consistency, and errors. 
Deviations were identified and analyzed before proceeding 
to the next testbed configuration. Our data analysis tracked 
SNs for each VL, independently flagging missing packets to 
understand the mechanisms of packet loss in AFDX 
networks. Key metrics used to characterize AFDX 
performance are BAG timing variables (such as average 
packet-to-packet time), their standard deviations, and the 
minimum and maximum values observed for each VL under 
test. Additional metrics included any packet errors observed, 
the skew between two redundant channels, and the total 
sustained bandwidth for each VL and for the AFDX 
network as a whole. 

At full load, the AFDX network produced thousands of 
packets per second, producing many thousands and even 
millions of packets for analysis, producing good timing 
statistics. Since each run could include tens of thousands of 
data capture records—each packet record having more than 
40 data fields—this examination of the data had to be 
automated. The analysis process required sorting the full 
packet capture dataset by VL and also by channel for 
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redundant data sets. A key requirement was to identify any 
missing or dropped packets. 

The analysis program Panorama V was used to validate the 
data sets and to perform statistical analysis of the captured 
packet data to produce BAG timing, jitter timing, and 
redundant-channel timing statistics. The team chose to use 
Panorama, a "personal computer" database/spreadsheet 
application from ProVUE Development (www.provue.com) 
because of its excellent tools for exploratory data analysis. 
Panorama includes a powerful scripting language for both 
database manipulation and interface development. It also 
offers exceptional data processing speed. Using its database 
features, the captured records could be easily parsed, 
augmented, sorted, selected, summarized, and displayed. 
Using the scripting language, the team captured these 
manipulations as screening routines for validating data. 
Subtle anomalies buried in the data could thus be brought to 
attention, enhancing the team's understanding of the 
generating processes and preventing errors from appearing 
in the statistics. 

Switch Latency Data Analysis 

The first task of the laboratory evaluation was to 
characterize the switch. The evaluation used commercial 
Ethernet switches (Catalyst 2900) from Cisco. Aerospace 
AFDX product vendors recommend using such switches for 
testing, since actual AFDX switches are very expensive, 
only built to custom order, and may block the errors and 
other phenomenon we were trying to measure. 
Theoretically, the switch should present fixed time latency 
for network traffic if lightly loaded, with a simple constant 
timing delay for each packet. With testbed timing accuracy 
better than 1 µsec, we were able to confirm that hypothesis 
showing that latency scaled with packet length, validating 
the test setup and accuracy of each packet monitor. It should 
be mentioned that an AFDX switch is statically configured, 
with each VL and BAG defined prior to use. Furthermore, 
there is to be a maximum of 100 µsec of packet delay, and 
buffer sizes need to be scaled to the AFDX network to 
prevent packet loss. 

A Cisco Catalyst 2900 was statically configured to support 
the current test setup. The Cisco Catalyst 2900 allows the 
user to “tie” two or more switch ports together with the 

creation of virtual LANs (VLANs), isolating AFDX traffic 
by statically configuring the switch to reduce collisions. 
This is very similar to the predefined AFDX switch 
configuration table. Collisions are prevented and packet loss 
is minimized since traffic is steered only to ports active in 
the test. This is important, because we wish to observe 
packet loss due to AFDX end-station malfunction, 
difficulties in VL scheduling, traffic overload, and other 
phenomena that require the switch to work properly for 
AFDX emulation. 

The following tests were used to quantify Cisco 2900 switch 
latency. The reference end station system was used with the 
Cisco switch in one segment and a direct connection in the 
other segment. In this configuration, Channel A-to-Channel 
B skew represents absolute switch latency. 

The Cisco switch latency scales with packet size and not 
with VL or BAG values. A full packet (1518 bytes) incurs a 
latency of about 132 µsec, while a 512-byte packet incurs 
roughly one-third that value, or 52 µsec. At the low end, a 
64-byte packet requires 16 µsec, which is not quite linear. 
The Cisco switch is about 30% slower than the AFDX 
switch specification allows. 

The Cisco switch uses an 8 MB buffer global to all ports. 
This will introduce an aggregate of 640 msec of delay for all 
packets being buffered in the switch. It will also be able to 
accommodate at least 4000 packets before overrun and 
packet loss. The basic difference between various switches 
is the total amount of latency they can introduce into a 
network and also the point (in terms of stored packets) at 
which they begin to drop packets.  The Cisco is able to 
handle a significantly larger number of packets in its buffer 
than other switches, resulting in much longer delays prior to 
packet loss. 

The switch should learn the MAC addresses of end stations 
connected to each port and then use them to switch the 
Ethernet frames to the correct port. Our analysis revealed 
that the switch was broadcasting to all ports, and that 
simultaneous packet delivery to multiple ports (even ports 
not involved in the VL data transfer) was resulting in extra 
“collisions” leading to packet delay and possible loss. In this 
mode, all packet traffic was affecting all active switch ports. 
Proper operation would have the packet traffic switched to 
only those switch ports that were active in the VL, resulting 

VL BAG Pkt S ize BAG Ave BAG SD BAG M in BAG Max Skew BW Errors
m sec bytes m sec µsec m sec m sec µsec Mbps

10 128 1518 128.00 0.29 128.000 128.001 132 0.1 0
11 64 1518 64.00 0.21 64.000 64.001 132 0.2 0
12 8 512 8.00 0.11 8.000 8.001 52 0.53 0
13 1 64 1.00 0.04 1.000 1.001 16.2 0.67 0
14 1 64 1.00 0.05 1.000 1.001 16.2 0.67 0
15 1 64 1.00 0.04 1.000 1.001 16.2 0.67 0

Totals 2.84 0

Table 2. C isco Sw itch Latency Data Analysis Sum m ary

AIM -1 Port 1 &  2 transm it d irect and through C isco sw itch to AIM -2 Port 1 and 2
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in lower traffic rates at each port. This switch works in a 
broadcast mode until it is able to fill out its switch table; 
then it starts buffering packets and routing them to the 
correct ports based on MAC addresses. Further study 
revealed that most 802.3 switches learn the MAC address of 
connected end stations by capturing the MAC address of 
each transmitting station. This works fine for Ethernet, 
where all ports have a unique MAC address and also 
transmit at some time, allowing this algorithm to reliably fill 
out the switch table. 

Each end station was connected to the switch using a full-
duplex cable connection, which eliminated any chance of 
collisions on this network segment, but packet collisions 
could still occur internal to the switch. For example, when 
two end stations send a packet to the same receiving end 
station at the same time, the two packets must be staggered 
by delaying one until the other has been successfully 
received. Ethernet 802.3 switches have sufficient buffer 
capability and data transfer speed to be able to do this for at 
least a half-dozen packets per port. Moreover, the switch 
should use the MAC address to steer each packet to its 
destination port and no others, reducing contention. 

Ancillary Sensor Network Test Vectors 

The following test vectors were used to incrementally build 
and test an AFDX configuration to simulate the Ancillary 
Sensor Network (ASN). Traffic patterns that could be 
produced by sets of sensors at the prescribed rate groups 
were generated, with each test vector adding more sensor 
channels and loading the network more fully. Two end-
stations running traffic generation and packet capture 
software were setup and were designated AIM-1 and AIM-
2. The tests were run unidirectional, from AIM-1 to AIM-2 
in a dual redundant configuration using the Cisco 2900 
switch. The first test vector (TV32) used 60 VLs and the 
second test vector was run with 120 VLs to determine the 
effects on packet timing caused by more collisions in the 
switch due to increased network load. 

Test Vector 32 (TV32), set up 15 VLs each at the 128-msec, 
32-msec, 8-msec and 1-msec BAG values, for a total of 60 
VLs. The packet sizes were 512, 256, 128 and 64 bytes 
respectively. This test was run unidirectional in dual-
redundant mode. The following chart shows the data for 
Test Vector 32 on a scatter plot showing average measured 
packet BAG values and maximum BAG values. All values 
match up, indicating conformance to the AFDX jitter 

Chart 1. TV32: 60 VL ASN Test

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60

Virtual Link Number

B
A

G
 T

im
e
 I

n
te

rv
a
l 
(m

se
c)

BAG Maximum

BAG Average



15 

specification. For these charts, the blue triangle (measured 
packet BAG average value) should overlay the yellow 
diamond (measured packet BAG maximum value) 
completely if the VL is conforming to the AFDX jitter 
specification. If the yellow diamond is showing, this VL has 
at least one packet that exceeds the 0.5 µsec jitter 
specification. This allows easy recognition of which VLs 
contain jitter in excess of the specification. 

While the average values are still acceptable (with only a 
very small increase), the standard deviations have increased 
significantly and the maximum delay values push out to 450 
µsec, near the jitter limit. The average of all the standard 
deviations in this set is 60 µsec, as compared to under one 
µsec for simple loopback configurations. Certain cycles, 
where many packets are issued simultaneously, are starting 
to experience switch congestion at a network load factor of 
14%. The packet delay in this case is about 156 µsec, but 
the corresponding switch delay is a maximum of 1890 µsec, 
enough to start causing missed packets in high-rate groups, 
which was not observed with TV32. Skew between packets 
from Channel A and Channel B was always small and 
within specifications. 

Test Vector 33 (TV33) expanded the number of VLs to 120, 
again by repeating the rate groups. This was done to 
demonstrate the effects of network throughput on packet 
timing. The chart below shows the average and maximum 
BAG values for this TV 33 test run. Average BAG timing 
increased by 0.3 msec for all the 128-msec VLs, with 

standard deviations nearly four times those of TV32. The 
standard deviations did not exceed the jitter threshold, but 
the maximum BAG value exceeded the jitter threshold of 
0.5 msec many times as shown in Chart 2. Certain VLs of 
the high-rate BAGs are affected badly, with many 8-msec 
groups taking 12 and even 13 msec at certain times. The 1-
msec BAG VLs can sometimes experience up to 4 msec of 
delay. Packet-issue delay would be double that of TV32, or 
312 µsec, but maximum switch delay is an astounding 3780 
µsec (3.8 msec), which has to be spread out between all 
active VLs, resulting in the occasional delayed packet. 
Network throughput in this case was 28 percent of total 
capacity. 

The interpretation of these results centers upon 
understanding the maximum possible collision rate and 
consequent delay through the Cisco 2900 switch. Up to 640 
milliseconds of delay is possible through this switch without 
dropping packets. With about 240 packets being generated 
sequentially by the two end stations simultaneously, delay 
through the switch is almost certainly the dominant factor—
particularly since the packet-issue delay by each end station 
is much less by at least an order of magnitude. This 
interpretation is bolstered by the observation that BAG 
averages for TV33 are all longer than nominal. All jitter 
timing violations are positive, therefore caused by additional 
delay. 

The exact interleave of packets through the switch and the 
resulting packet delay value was very dependent upon the 

Chart 2. TV33: 120 VL ASN Test
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relative phase of the network traffic from each port. 
Pressing a GUI button starts packet traffic from each AIM 
system; so all VLs start at the same time from that AIM unit 
but start asynchronously between AIM-1 and AIM-2 
systems. There may also be minor timing differences 
between Channel A and Channel B, which may have an 
effect on collisions. Therefore, collisions in the switch 
resulting in packet delay will be different depending upon 
the phase difference between transmitting end stations. The 
switch must reconcile highly variable contention as phase 
differences between transmitting end stations varies. The 
worst case collision rate occurs when many VLs all transmit 
at the same time, necessitating buffering of most packets. 

Collisions in the switch—which leads directly to variable 
latency for packets traversing the switch, increasing the 
jitter and disturbing AFDX network timing is the primary 
design issue for AFDX networks. If all end stations generate 
packets like clockwork, the only real source of jitter is in the 
switch. It is the central component that absorbs the timing 
uncertainties by correctly distributing the variable latencies 
between the packets in order to prevent BAG timing 
violations on all VLs. It is clear that switch delay (in cases 
where many packets are issued simultaneously, and buffered 
in the switch) is the main reason this test configuration—
representative of a full-up ASN—has timing problems. A 
faster switch would help mitigate this timing problem. The 
Cisco switches are slower than the AFDX specification, 
which is 100 µsec maximum per packet. The Cisco switches 
exceed this by about 30%. This example fully demonstrates 
the importance of switch design, even in an AFDX network 
loaded to only 28 percent. This ASN would comply with the 
AFDX specification and ARINC 664 P7 if the delay 
through the switch were less. An AFDX-compliant switch 
actually regulates total packet delay to prevent such issues. 
Therefore, an ASN design similar to this would be feasible 
with the proper AFDX switch. 

6. CONCLUSIONS 

The Aerospace Industry has developed a series of new 
standards and components that would be suitable for high-
bandwidth data acquisition and information processing. 
There are significant advantages to adopting ARINC 653 
and AFDX communication standards for use aboard 
spacecraft. Our ASN design study has revealed some 
important lessons regarding IMA design: 

• AFDX technology is mature enough to apply to specific 
data-handling functions aboard spacecraft, particularly 
to telemetry, data display, and flight data recording. 
Component certification is needed. 

• Integrated Modular Avionics (IMA) architecture is a 
strong approach for improving software design, with 
functional partitioning resulting in improved validation 
and verification. It requires high-function LRUs and 
enhanced data communications, but delivers better fault 

isolation and configuration management. It is 
potentially sensitive to timing variations due to partition 
swapping. 

• The ARINC 653 “Avionics Application Software 
Standard Interface” application program interface (API) 
and partitioned operating system is being adopted for 
flight control and should simplify software design and 
validation and verification. 

• AFDX is well suited for IMA, providing good 
integration with ARINC 653 Queuing and Sampling 
Ports and the use of XML system-configuration 
methods. 

• AFDX and similar network standards can dramatically 
reduce the number, weight, and volume of cable 
interconnects required for a spacecraft. 

• AFDX can provide much higher data throughput than 
most aircraft control data buses. It can provide reliable 
time determinism and fault tolerance suitable for 
mission-critical applications. 

• AFDX network functionality of the Ancillary Sensor 
Network was well established in laboratory evaluation, 
providing significant risk reduction for adoption of 
AFDX for Flight Test Instrumentation. 

• Laboratory evaluation of ASN AFDX configurations 
showed that they could scale well to about 30% of full 
100 Mbps transmit rate before high standard deviation 
of BAG timing and violations of the AFDX jitter 
specification became apparent. 

• The major factor for AFDX timing violations and 
packet loss was overload of network switch buffers 
caused by too many packets arriving simultaneously. 
Staggering the packets from each end station can 
mitigate this loss. 

• The AFDX network switch is a critical component and 
characterization of switch function and latency and the 
effect of collisions and packet loss on AFDX networks 
was determined. 

• A real AFDX network prevents timing variations and 
packet losses by defining network VL timing 
characteristics and packet length during the design 
phase. Careful selection of switch buffer size can then 
eliminate most loss and delay exceeding the jitter 
specification.  
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